
理解python中的坐标轴

0. 引言

对于一个列表来说，求和显然是将所有元素相加，但是如果是一个矩阵，甚至更高维的存在，相加方式
就有很多，所以可以把他们化归为列表的形式，将他们以某种方式看成一个列表，然后所有元素相加，
即可得到答案。

1. 例子

以下为一个三维列表的例子：

2. 先讨论axis=0

对一个tensor张量来说，axis=0代表去掉最外层的[]，或者说进入最外层的[]，此时发现有两个元素。

如果此时对于他们进行操作，就是将其看成两个元素。

如列表[1, 2]，那么求和就是直接对这两个元素求和。

对应到原列表上就是两个矩阵的求和，见以下代码

[

 [

 [1., 1., 1., 1.],

 [2., 2., 2., 2.],

 [3., 3., 3., 3.]

],

 [

 [4., 4., 4., 4.],

 [5., 5., 5., 5.],

 [6., 6., 6., 6.]

]

]

[

 [1., 1., 1., 1.],

 [2., 2., 2., 2.],

 [3., 3., 3., 3.]

] # 记为A

[

 [4., 4., 4., 4.],

 [5., 5., 5., 5.],

 [6., 6., 6., 6.]

] # 记为B

af://n0
af://n2
af://n4
af://n7

输出为

3. 继续讨论axis=1、2

如果axis为1，则继续进入第二层[]，由于有两个元素，他会分别进入元素A、元素B，以元素A为例来
看，可以发现他有三个元素[1., 1., 1., 1.], [2., 2., 2., 2.], [3., 3., 3., 3.]，由于并没有再进一层方括号，所以
这三个就是基本元素，会对其相加，组成[6,6,6,6]，同理元素B也会如此。

axis为2，则更进一层，进入第三层[]，如[1., 1., 1., 1.]，那会得到4，其余同理。

PS: 记得我并不是将方括号拆掉，而是进入，所以原本第一、第二、第三层的方括号同样都存在，所以
会阻隔某一层次中不同元素内部的元素互相混合。

4. 补充

事实上，通过这个理解可以发现，本质对某一axis的求和，就是把这一层的元素求和，这会导致这一层
的元素个数变为1，所以这一层就没有必要存在，因此可以看到以上 的变量：

axis=0时，输出是
axis=1时，输出是
axis=2时，输出是

import numpy as np

X = np.array([[[1., 1., 1., 1.],

 [2., 2., 2., 2.],

 [3., 3., 3., 3.]],

 [[4., 4., 4., 4.],

 [5., 5., 5., 5.],

 [6., 6., 6., 6.]]])

print(X.sum(axis=0))

[[5. 5. 5. 5.]

 [7. 7. 7. 7.]

 [9. 9. 9. 9.]]

>>> print(X.sum(axis=1))

[[6. 6. 6. 6.]

 [15. 15. 15. 15.]]

>>> print(X.sum(axis=2))

[[4. 8. 12.]

 [16. 20. 24.]]

af://n16
af://n22

	理解python中的坐标轴
	0. 引言
	1. 例子
	2. 先讨论axis=0
	3. 继续讨论axis=1、2
	4. 补充

